An Ant Colony Optimization Based Feature Selection for Web Page Classification
نویسندگان
چکیده
منابع مشابه
An Ant Colony Optimization Based Feature Selection for Web Page Classification
The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated ...
متن کاملA Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification
In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...
متن کاملAnt Colony Optimization for Feature Subset Selection
The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that ut...
متن کاملWeb Page Classification with an Ant Colony Algorithm
This paper utilizes Ant-Miner – the first Ant Colony algorithm for discovering classification rules – in the field of web content mining, and shows that it is more effective than C5.0 in two sets of BBC and Yahoo web pages used in our experiments. It also investigates the benefits and dangers of several linguistics-based text preprocessing techniques to reduce the large numbers of attributes as...
متن کاملAn Adaptive Fuzzy Ant Colony Optimization for Feature Selection
Standard pattern classifiers perform on all data features. Whereas, some of the features are redundant or irrelevant, which reduce prediction accuracy, and increase running time of classifier. The purpose of this study is to search optimal feature subset, in order to increase the classification performance. The feature selection problem differs from traditional optimization problem on the probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/649260